Festgabe für Kurt Holter zum 80. Geburtstag

JAHRBUCH DES. OÖ. MUSEALVEREINES GESELLSCHAFT FÜR LANDESKUNDE

136. Band

1. Abhandlungen

Inhaltsverzeichnis

Walter Aspernig: Prof. Dr. Kurt Holter — Werksverzeichnis	9
Erwin M. Ruprechtsberger: Fund einer latènezeitlichen Lanzenspitze aus Kronstorf	13
Erwin M. Ruprechtsberger: Schwert und Meissel — zu zwei bronzezeitlichen Funden aus Linz	23
Hubert Preßlinger: Werkstoffkundliche Untersuchungen bronzezeitlicher Funde aus dem Raume Linz	37
Rupert Breitwieser: Ein spätantiker Grabfund aus Enns-Reinthal	43
Gerhard Winkler: Die Ovilatus-Frage	49
Hermann Vetters: Das Stadtrecht von Lauriacum	53
Heinrich Koller: Bischof, Wanderbischof, Chorbischof im frühmittelalterlichen Baiern	59
Norbert Wibiral: Apostelgeschichte und jüdische Altertümer in Lambach	73
Walter Aspernig: Vier niederösterreichische Bauernhöfe unter dem Stiftungsgut eines Welser Benefiziums	97
Bernhard Prokisch: Ein Münzfund des 16. Jahrhunderts aus dem Stift Wilhering	105
Friederike Grill-Hillbrand: Lorenz Mittenauers Fingerzeig	169
Georg Heilingsetzer: Der Sebastiansaltar Albrecht Altdorfers	189
Ulla Weich: Schloß Vogelsang in Steyr	197
Margareta Vyoral-Tschapka: Die Baupläne für Schloß Mistelbach in der Stiftsbibliothek von Schlierbach	213
Zdeněk Š i m e č e k : Der Salztransport auf der Moldau von Budweis nach Moldautein im 16. Jahrhundert	223
Herta Hageneder: Legata ad Pias Causas	239
Georg Wacha: Holzdruckstöcke der letzten Welser Kartenmaler in Salzburg	245
Brigitte Heinzl: Das Kubinhaus in Zwickledt, seine Einrichtung und Sammlungen	251
Siegfried Haider: Der Aufstand von Goisern am 13. September 1921	297
Gabriele Mair: Das Phytoplankton in einigen Baggerseen des Linzer Raumes	313
Gerald Mayer: Revision der Bewertungen der Brutvögel Oberösterreichs	361
Gertrud Th. Mayer: Zum Brutvorkommen von Knäckente und Ziegenmelker in Oberösterreich	397
In Memoriam UnivProf. DDr. Peter Gradauer	405
Rezensionen	400

		[
Jb. Oö. MusVer.	Bd. 136	Linz 1991
		1

WERKSTOFFKUNDLICHE UNTERSUCHUNGEN BRONZEZEITLICHER FUNDE AUS DEM RAUME LINZ

Von Hubert Preßlinger

1. Einleitung

Vom Stadtmuseum Nordico Linz wurden ein spätbronzezeitliches Griffzungenschwert (Abb. 2) und ein frühbronzezeitlicher Randleistenmeißel (Abb. 8) für metallographische Untersuchungen übergeben. Das bronzezeitliche Schwert wurde bei händischen Aushubarbeiten auf dem Areal der Österreichischen Bundesbahnen im Bereich des Stellwerkes 13 in Linz-Kleinmünchen geborgen¹. Der Randleistenmeißel wurde bei Baggerungen im unmittelbaten Bereich der Ebelsberger Brücke gefunden².

Durch die metallographischen Untersuchungen sollte zunächst die Frage — wie wurden der Schwertgriff und die Klingenzunge miteinander verbunden — beantwortet werden. Weiters sind bei der Restaurierung des Bronzeschwertes von der Schwertklinge bzw. vom Schwertgriff Bohrspäne entnommen worden. Die Späne sind metallographisch zu beurteilen und danach am Rasterelektonenmikroskop energiedispersiv bzw. ein Teil der Späne naßchemisch zu analysieren. Im hervorragend erhaltenen Randleistenmeißel sollte die chemische Zusammensetzung mit Hilfe des Rasterelektronenmikroskops energiedispersiv bestimmt werden. Hiermit werden Erkenntnisse über die chemische Zusammensetzung des Bronzeschwertes und des Randleistenmeißels erwartet.

2. Untersuchungsergebnisse

2.1. Röntgenographische Untersuchung des Bronzeschwertes Das Schwert wurde in der Materialprüftechnik bei VOEST-ALPINE STAHL LINZ Ges.m.b.H. der Gamma-Strahlung von radioaktivem Iridium ausge-

E. M. Ruprechtsberger, Neufund eines bronzezeitlichen Schwertes: Aus d. Stadtmus. Linz: Nordico-Mitteilungen Nr. 406/1990.

² E. M. Ruprechtsberger, Ein bemerkenswerter bronzezeitlicher Fund aus der Traun in Linz-Ebelsberg: Aus d. Stadtmus. Linz. Nordico-Mitteilungen Nr. 332/1986.

setzt. In Abb. 5 ist die Röntgenaufnahme der Kontaktzone zwischen Klingenzunge und Schwertgriff abgebildet. Der Griff wurde extra gegossen, anschließend als Paßverbindung auf die Klingenzunge angefügt und mit der Schwertklinge vernietet. Die Klinge wurde, wie in der Urnenfelderzeit üblich, gegossen und anschließend geschärft. Dies stimmt auch mit in der Literatur³ veröffentlichten Untersuchungsergebnissen überein.

2.2. Metallographische Beurteilung des Bronzeschwertes Die bei der Restaurierung entnommenen Späne von der Schwertklinge bzw. aus dem Schwertgriff wurden eingebettet, geschliffen und im Lichtmikroskop beurteilt. In Abb. 9 ist beispielgebend ein Bohrspan aus der Klinge abgebildet. Darin kann man erkennen, daß der gegossene Bronzewerkstoff einen Anteil an nichtmetallischen Einschlüssen besitzt.

Um die nichtmetallischen Einschlüsse zu identifizieren, wurden die betreffenden Probestellen am Rasterelektronenmikroskop energiedispersiv punktanalysiert. Neben der Bronzematrix sind die nichtmetallischen Einschlüsse als Kupfer- bzw. Kupfer-Eisen-Sulfide zu bewerten (Abb. 10).

2.3. Chemische Zusammensetzung des Bronzeschwertes In den bei der Restaurierung entnommenen Bohrspänen wurde am Rasterelektronenmikroskop zunächst eine semiquantitative Analysenauswertung (umgerechnet auf 100 Gew. %) mit folgendem Ergebnis durchgeführt:

	Element	Cu	Sn
Probe		in Gew. %	in Gew. %
Klinge		92,02	7,98
Griff		92,76	7,24

Schwertklinge und -griff sind aus Zinnbronze mit einem in dieser Zeit gern eingestellten Zinngehalt von 7 bis 8 Gew. %. Die Elemente Schwefel, Nickel, Silber usw. liegen unter der Nachweisgrenze am Rasterelektronenmikroskop von 0,2 Gew. %. Daher wurden am Institut für Geowissenschaften an der Montanuniversität von Hrn. Univ.-Doz. Dr. W. Prochaska naßchemische Analysen auf Nickel und Silber vorgenommen, wie der folgenden Tabelle abgelesen werden kann.

	Element	Ni	Ag
Probe	•	in ppm	in ppm
Klinge		1080	29
Griff		900	17

³ C. Eibner; D. Wald, Computersimulation von gegossenen Bronzeschwertern — Der Zweikampf zwischen Paris und Menelaos bei Homer: Giesserei 77 (1990) Heft Nr. 2, 38/39.

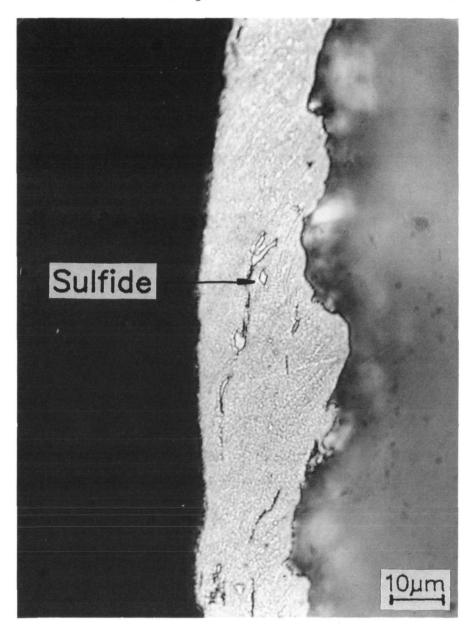


Bild 9: Nichtmetallische Einschlüsse in einem Bohrspan entnommen aus der Schwertklinge.

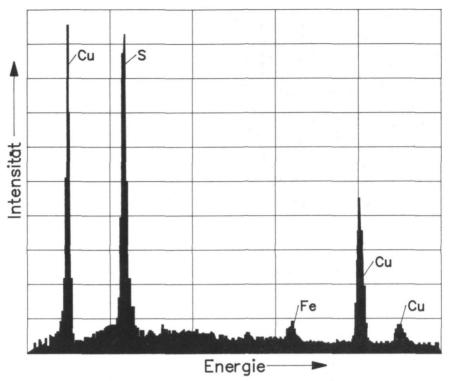


Bild 10: Energiedispersives Röntgenspektrum eines Sulfideinschlusses in einem Bohrspan aus der Schwertklinge.

Nickel und Silber liegen in einem für urzeitliche Bronze charakteristischen Analysenbereich. Aus der geringen Anzahl von Bohrspänen sind die angeführten Analysen nur als Richtanalysen zu bewerten. Eine Untersuchung anderer Elemente konnte wegen des geringen Probenmaterials nicht mehr gesichert vorgenommen werden.

2.4. Chemische Zusammensetzung des Randleistenmeißels Zur Untersuchung wurde, um den Einfluß der Patina auszuschließen, der Meißel an einer bestimmten Stelle leicht angeschliffen und poliert. Danach wurde im Rasterelektronenmikroskop der Meißel energiedispersiv analysiert und mit Hilfe eines Korrekturprogrammes semiquantitativ ausgewertet.

Die semiquantitative Analysenauswertung ist in Abb. 11 graphisch dargestellt. Der Meißel ist mit 87,3 Gew. % Cu; 12,1 Gew. % Sn; 0,5 Gew. % Zn; 0,2 Gew. % Fe als eine Zinn-Bronze zu bezeichnen. Die Elemente — As, Sb, Ni, Pb, S — liegen unter der Nachweisgrenze von ca. 0,2 Gew. % (geringere Gehalte als 0,1 Gew. % Schwefel sind vorhanden).

3. Resümee der Untersuchungen

Schwertklinge und -griff wurden separat aus Zinn-Bronze gegossen. Beide Werkstücke sind eine Kupferzinn-Legierung mit ca. 8 Gew. % Zinn in der Schwertklinge und 7,2 Gew. % Zinn im Schwertgriff. Die Summe an Begleitelementen — Fe, Ni, S, Pb — ist kleiner als 0,5 Gew. %.

Bei kritischer Beurteilung der chemischen Analysen von Schwertklingen bzw. -griff fällt auf, daß beide Bronzewerkstücke aus einer »reinen Bronze«, d. h. nur mit geringen Gehalten von Ni, Fe, S verunreinigt, gegossen worden sind. Bronzewerkstoffe dieser chemischen Zusammensetzung sind nach heutigem Wissenstand zwar seltener, aber für die Bronzezeit nicht unbekannt. Angeführt sei hier die chemische Analyse eines Kupfergußkuchens aus Saalfelden mit über 96 Gew. % Kupfer4. Ähnlich hohe Kupfergehalte von über 98 Gew. % in urzeitlichen metallischen Kupferstücken aus Funden von Mitterberg/Salzburg wurden auch von Czedik-Eysenberg⁵ veröffentlicht (siehe auch Sperl⁶). Verschiedenartige Bronzelegierungen von Kupfer und Zinn mit unterschiedlichen Gehalten an Begleitelementen werden von Funden aus der Schweiz in der Literatur⁷ zusammengestellt. Auch daraus erkennt man, daß Bronzewerkstoffe mit geringen Gehalten an Begleitelementen nicht unüblich waren. Weiters ist hier auch die Analyse eines urnenfelderzeitlichen Rohlings aus der Siedlung Kaiserköpperl, Gemeinde Rottenmann/Steiermark, mit 83 Gew. % Cu; 16,5 Gew. % Sn und Summe Fe, S, Zn, Pb kleiner 0,4 Gew. %8 anzuführen.

Häufig ist allerdings der Gehalt an Begleitelementen - Fe, Ni, S, Pb in Summe größer als 0,5 Gew. %. Als Beispiel kann das Untersuchungsergebnis eines frühbronzezeitlichen Randleistenmeißels angeführt werden (Abb. 11). Die chemische Analyse ergab folgende Zusammensetzung: 87,1 Gew. % Cu; 12,1 Gew. % Sn; 0,5 Gew. % Zn und 0,2 Gew. % Fe.

Diese chemische Zusammensetzung des Randleistenmeißels aus Ebelsberg ist eine typische Zusammensetzung für Bronzewerkstoffe der Bronzezeit ^{9, 10}.

Zusammenfassend ergab diese Untersuchung, daß das Bronzeschwert aus sehr reinen Rohstoffen erschmolzen und danach vergossen worden ist.

- 4 A. Gruber; H. Preßlinger, Werkstoffkundliche Untersuchungen an prähistorischen Kupfergußkuchen aus den Ostalpen: Metall 37 (1983) 1254/1256.
- 5 F. Czedik-Eysenberg, Beiträge zur Metallurgie des Kupfers in der Urzeit: Archaeologia Austriaca, Beiheft 3 (1958) 1/18.
- 6 G. Sperl, Metallographic examination of Bronze Age Copper Metals: Technology (May 1980) 212/217.
- 7 V. Rychner; N. Kläntschi, L'analyse chimique du bronze préhistorique: pourquoi?: Zeitschrift für Schweizerische Archäologie und Kunstgeschichte 47 (1990) Heft Nr. 3,
- 8 A. Angerbauer, Werkstoffkundliche Untersuchungen an Kupferfunden aus der Bronzezeit, Diplomarbeit, Montanuniversität Leoben (1985).
- 9 R. F. Tylecote, A History of Metallurgy. The Metals Society (London 1979).
- 10 J. Riederer, Kunstwerke chemisch betrachtet (Berlin-Heidelberg-New York 1981).

Diese hohe Reinheit bzw. geringen Gehalte — an Fe, S, Ni, Pb — sind auf eine Raffination des Schwarzkupfers zurückzuführen, die von den Metallurgen in der Spätbronzezeit auch in den Siedlungen durchgeführt wurde¹¹. Die chemische Zusammensetzung des frühbronzezeitlichen Meißels ist für bronzezeitliche Kupfergußwerkstoffe als gängige Legierung bekannt und als typisch zu bezeichnen.

Aufgrund der metallurgischen Ergebnisse bestehen nach dem derzeitigen Wissensstand keine Bedenken, diese beiden Funde — frühbronzezeitlichen Randleistenmeißel, spätbronzezeitliches Griffzungenschwert — der vom Archäologen zugeordneten Zeitperiode einzureihen.

11 H. Preßlinger; B. Hebert, Untersuchung prähistorischer Schlacken vom Burgstallkogel: Archäologie Österreichs, Mitteilungen der Österreichischen Gesellschaft für Urund Frühgeschichte XL (1990) 1/1—2, 48/50.

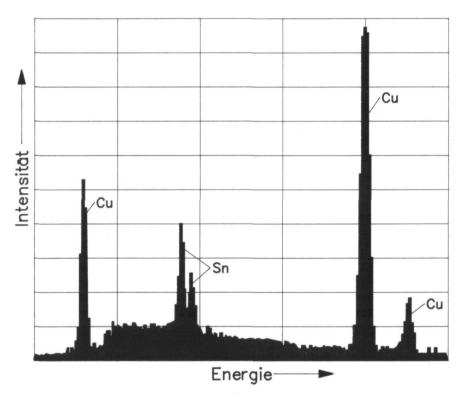


Bild 11: Energiedispersives Röntgenspektrum aus dem frühbronzezeitlichen Randleistenmeißel.